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Abstract

The amount of space debris in Low Earth Orbit (LEO) has been steadily increasing since the

beginning of space exploration. This debris severely threatens the safety of operational satellites and

missions due to potential damage caused by collisions at orbital velocities. Furthermore, collisions

between debris will lead to greater fragmentation, causing a cascading effect known as the Kessler

syndrome, rendering LEO unusable for space exploration.

Active debris removal (ADR), which involves using a satellite to capture and deorbit debris, is a

promising approach to stabilizing the growth rate of space debris in LEO, especially as the amount

of debris would still increase even in the absence of further launches due to fragmentation caused by

collisions.

Several challenges still stand in the way of effectively using ADR missions to mitigate the Kessler

syndrome. Constant fragmentation and change in the dynamic LEO environment, combined with

limitations in current debris tracking and monitoring technology, makes it difficult for researchers

and engineers to plan safe and scalable ADR missions. Furthermore, to account for the rapid growth

of the space industry, ADR missions must be done in a time-efficient and cost-effective manner,

enabling progress in space research without compromising on the long-term sustainability of the LEO

environment.

This paper presents an ADR mission planning problem formulation based on multi-objective

optimization and the Time-Dependent Orienteering Problem (TDOP), and develops a novel method

to solve the problem based on memetic algorithms. We show that our algorithm produces solutions

of high quality and provides a high degree of flexibility in planning ADR missions to achieve various

mission-specific objectives and meet certain constraints. We also present the use of long-term LEO

environment simulations such as ESA’s cascade library as a novel part of our methodology for

evaluating solutions.

Keywords: Active Debris Removal, Combinatorial Optimization, Multi-Objective Optimization, Evo-

lutionary Computation, Time-Dependent Orienteering Problem, Memetic Algorithms
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1 Introduction

Low Earth Orbit (LEO) is typically defined as an orbital region within 2000 km above Earth’s surface [1].

LEO orbits require the least energy for satellite placement, and the close proximity of LEO satellites to

the surface make them easier to maintain and suitable for applications such as communication, where

bandwidth and latency play key roles in performance. Because of these characteristics, LEO contains

most of the artificial space objects in orbit and is a typical choice for human spaceflight.

As such, the recent rapid increase of space debris in LEO is becoming a major concern for space

researchers and engineers due to the increased risk of debris colliding with operational satellites. Further-

more, with an increasing number of fragmentation events caused by collisions between existing debris,

researchers expect the density of space debris in LEO to increase to the extent that collisions cause a

cascading effect, increasing the likelihood of further collisions and rendering LEO unusable for space

exploration, a scenario known as the Kessler syndrome [2].

Figure 1: Evolution of number of objects by orbital region [3]

Figure 2: Extrapolation of future LEO space debris population [3]

Space debris is defined as non-functional man-made objects, including fragments or elements of man-

made objects, that are in orbit around Earth or re-entering the atmosphere [1]. Types of space debris

include defunct payloads, rocket bodies, and fragmentation debris [3]. Figure 1 shows the upwards trend

of the number of objects in LEO, including functional satellites and debris, and Figure 2 shows an
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extrapolation by the European Space Agency (ESA) predicting the increase in large objects, specifically

those greater than 10 cm in size, in LEO in the future [3].

Active debris removal (ADR) refers to the use of spacecraft missions that interact with debris to

remove it or reduce its lifetime. Studies have shown that even when following the Inter-Agency Space

Debris Coordination Committee (IADC) Space Debris Mitigation Guidelines [1] and in the absence of

any further launches, the amount of space debris in LEO will still continue to grow due to collision

fragmentation [4]. As such, it has been recommended that at least five large objects must be removed

from dense LEO regions each year to stabilize the LEO environment [5].

An ADR mission is implemented through the use of an ADR satellite, the “chaser”, which performs

a sequence of orbital maneuvers to rendezvous with each piece of space debris, performing a capture or

removal operation to either collect or deorbit it, such as attaching a deorbiting kit to it [6]. Each mission

will have a specific set of objectives, for example removing a greater amount of or more threatening

debris, as well as a set of constraints, such as ensuring that the mission is completed within a time limit.

Mission planning for ADR is challenging. This is due to the continuous nature of the orbital mechanics

of space debris, creating an infinite amount of possibilities for mission trajectories and making it difficult

to routinely apply techniques for solving combinatorial optimization problems.

In this report, we will introduce background topics relevant to this investigation (Section 2), discuss

typical methods employed to address the problem of ADR mission planning (Section 3), present a problem

statement that simplifies the task by using a discrete representation of time (Section 4), and propose a

novel approach to solving the problem with memetic algorithms (Section 5). We then evaluate our

methodology and discuss the viability of our approach for ADR mission planning (Sections 6, 7, and 8).

We summarize the main contributions of this report. Firstly, a novel memetic algorithm, the Active

Debris Removal Memetic Algorithm (ADR-MA), is introduced to solve the problem of ADR mission

planning. Secondly, a novel local search algorithm that exploits ADR-specific characteristics of the

problem to produce better results is presented. Thirdly, we develop a novel simulation-based methodology,

the Simulation-based Debris Threat Index (SDTI), for evaluating the threat posed by LEO space debris

in causing fragmentation contributing to the Kessler syndrome. Together, these contributions form a

comprehensive framework for ADR mission planning.

2 Background

This section will introduce the background topics in the field of optimization which are relevant to ADR

mission planning. For a summary of orbital mechanics relevant to ADR missions, refer to Appendix A.

2.1 Combinatorial optimization

The objective of ADR is to protect operational satellites by removing threatening debris and mitigate the

Kessler syndrome by avoiding further debris fragmentation [4]. Due to the high time and monetary costs

of space missions, ADR mission planning should seek to achieve the maximum impact on protecting the

LEO environment while keeping costs at a reasonable level. ADR missions consist of a set of debris to

remove and a time-dependent sequence of maneuvers to rendezvous with debris, creating a combinatorial

explosion of possible missions, out of which an optimal or near-optimal mission sequence is desired.

Hence, ADR mission planning is formulated as a combinatorial optimization problem.

Optimization is a field of mathematics and computer science that refers to finding the “best” or

optimal solutions to problems within the set of all feasible solutions [7]. This typically involves finding

a solution to maximize or minimize an objective function that indicates the quality and desirability of a

solution, while satisfying a set of constraints. The basic structure of an optimization problem is stated
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as

min
xPΩ

fpxq (1)

where x is a solution, f is the objective function and Ω is a set representing the solution space, which

encapsulates the constraints of the problem.

Combinatorial optimization is a subfield of optimization where the optimal solution is contained

within a finite, discrete solution space, emphasizing the combinatorial nature of the optimization problem

formulation and solutions [8]. It finds many applications in the field of operations research, where

common problems include routing problems such as the Traveling Salesman Problem (TSP) [9] and the

Vehicle Routing Problem (VRP), scheduling problems like the Job-shop Problem (JSP), decision-making

problems such as the Knapsack Problem (KP), and various others.

Due to the nature of combinatorics, the size of the solution space for a combinatorial optimization

problem often increases rapidly as the problem grows in scale, such as when more decision variables

are added. This makes it impossible to enumerate and search the entire feasible set for most problems,

especially at real-world scale. Because of this, metaheuristic approaches were developed, which are algo-

rithms that find sufficiently good solutions to optimization problems that would otherwise be unsolvable

through brute-force techniques. Although they provide no guarantee that a globally optimal solution will

be found, a well-designed metaheuristic can provide a solution close to the optimum within a reasonable

execution time. Popular metaheuristic approaches include evolutionary algorithms (EAs), ant colony op-

timization (ACO), particle swarm optimization (PSO), simulated annealing (SA), and local search (LS)

techniques.

However, there are still more challenges in solving combinatorial optimization problems. Many such

problems exhibit a rugged solution space, increasing the risk of converging upon a local maxima — a

solution which appears to be superior to all other solutions near or similar to it, but is not the globally

optimal solution.

Figure 3: Example of a rugged solution space [10]

Figure 3 shows an example of a rugged solution space, containing many local maxima represented

by the peaks. To decrease the likelihood of premature convergence, researchers consider the trade-off

between “exploration and exploitation” [11], where exploration refers to exploring the solution space to

avoid getting stuck in local maxima by gaining knowledge, and exploitation refers to improving solutions

to obtain a maximum once the algorithm believes that the solution space has been sufficiently explored
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based on its existing knowledge.

2.2 Multi-objective optimization

Many real-life optimization scenarios feature more than one objective to consider and optimize for, often

with conflicts between objectives. In the context of ADR mission planning, objectives may include

maximization of benefit towards the LEO environment, minimization of propellant cost or minimization

of mission time.

Economist Vilfredo Pareto introduced the concept of Pareto optimality [12], referring to an outcome

in which no objective can be improved upon without leaving another worse off, and hence the lack of an

outcome that is better in every objective. The concept has been applied to multi-objective optimization

problems (MOPs) [13], where solving an MOP involves finding a set of Pareto optimal solutions known

as the Pareto set, either exactly or approximately.

Figure 4: Example of a Pareto front [14]

Figure 4 shows an example of a Pareto front for an MOP where both objectives f1 and f2 are to be

minimized. The red line is the Pareto front, which includes points A and B as there are no solutions that

have smaller values for both f1 and f2; in contrast, point C is not on the front because it is dominated

— at least one solution exists that has more optimal values for both objectives.

Definition 1 A solution x˚ dominates another solution x, i.e. x˚ ą x if and only if @f P F : fpx˚q ď

fpxq ^ Df P F : fpx˚q ă fpxq where F is the set of objectives in a minimization MOP and x, x˚ P Ω.

Definition 2 A solution x˚ is Pareto optimal if and only if it is non-dominated, i.e. Ex, x˚ P Ω : x ą

x˚.

Definition 3 The Pareto set is the set of all Pareto optimal solutions.

Definition 4 The Pareto front is the image of the Pareto set in the objective space.

Once a Pareto set has been found, a Decision Maker (DM) [15] can select a solution that lies on the

Pareto front based on their domain-specific knowledge of the problem and preference of one objective

over another. The advantage of solving MOPs is that DMs are granted more flexibility in comparison to

single-objective optimization problems, where the set of optimal solutions is typically much more limited.
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2.3 Genetic algorithms

Genetic algorithms (GAs) are a specific kind of evolutionary algorithm that take inspiration from the

biological process of natural selection [17]. GAs are categorized as naturally-inspired population-based

metaheuristic optimization techniques [18], referring to its use of a population of individuals and the

fact that they do not find exact solutions to problems. The flowchart of the standard GA is shown in

Figure 5 [16].

Algorithm 1 shows the basic procedure for a GA, which maintains a population of candidate solutions,

known as individuals, which are iteratively evaluated against the objective function, selected and modified

to improve the fitness of solutions [17]. The time complexity of GAs can be calculated from their main

components to be Opngen ¨ npop ¨ mq, where m is the length of an individual chromosome.

GAs are known to be extremely flexible algorithms, with most of their phases and parameters be-

ing customizable, including the parameters, genetic encoding, genetic operators and termination condi-

tions [19]. This allows algorithm designers to strategically employ domain-specific or problem-specific

operators and configurations to achieve the best performance both in terms of solution quality and

algorithmic performance, enabling GAs to be applied to various discrete and continuous optimization

problems. However, GAs also have disadvantages, namely the risk of premature convergence on local

maxima, sensitivity to parameter configurations, and computational efficiency [20]. Maintaining of ge-

netic diversity and ensuring a balance between exploration and exploitation remain major challenges in

the area of GAs.

3 Related work

3.1 ADR mission planning approaches

Various articles discussing the task of ADR mission planning have been published in the literature. Several

problem formulations have been proposed, most prominently variants of the TSP with consideration of

the time-dependent nature of such missions, such as the Time-Dependent Traveling Salesman Problem

(TDTSP) and the Time-Dependent Orienteering Problem (TDOP).

In addition, many approaches have been proposed for solving the NP-hard combinatorial optimization

problems. Federici et al. proposes a formulation of the TDOP as a standard search problem as well as the

use of the A* graph search algorithm to solve it, employing a novel Longest Short Path (LSP) heuristic

that can be solved efficiently with dynamic programming [21]. Zona et al. propose a similar formulation

with multiple chasers, using genetic algorithms and the TSP 2-opt local search technique to solve the

problem [22]. Other techniques, such as ant colony optimization (ACO) [23, 24], simulated annealing

(SA) [25] and machine learning (ML) [26] have been proposed. Yang et al. propose a methodology using

reinforcement learning (RL) [27], proposing a novel RL problem formulation and methodology combining

RL with upper confidence trees (UCTs), finding that the RL-based methodology is both robust and

resistant to premature convergence.

Consideration of multiple objectives for ADR missions has been studied by researchers [28, 29], possi-

bly motivated by the multiple requirements of the thriving space industry. Common objectives presented

in MOPs include maximization of the benefit derived from removing debris, minimization of orbital trans-

fer cost ∆V , minimization of mission time or minimization of the number of chasers required to remove

a cluster of debris.

Choi et al. propose a bi-objective formulation that aims to maximize the score of the removed debris

and minimize the total ∆V of the mission [30]. The novel Hazard Criticality Index (HCI) is developed

in their investigation. They use multi-objective evolutionary algorithms (MOEAs) [15] combined with a
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Figure 5: Flowchart of the genetic algorithm procedure [16]

Algorithm 1 Genetic algorithm

P0 Ð Initialize(npop) Ź Randomly initialize a population P of npop individuals
for t Ð 1 to ngen do Ź Run for ngen generations

for all x P Pt do
fx Ð Fitness(x) Ź Evaluate the fitness of each individual

end for
Pt`1 Ð H

while |Pt`1| ă n do
a, b Ð Selection(Pt, f) Ź Parents are selected based on fitness
if Random-Probability() ď P pcrossoverq then

a, b Ð Crossover(a, b) Ź Crossover operator mixes genetic information
end if
if Random-Probability() ď P pmutationq then

a, b Ð Mutation(a), Mutation(b) Ź Mutation operator explores the solution space
end if
Pt`1 Ð Pt`1 Y ta, bu

end while
end for
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Random-Key (RK) genetic encoding scheme, finding that NSGA-II [31] achieves the best performance in

terms of Pareto optimality and solution diversity.

Missel and Mortari focus on a specific mission, Space Sweeper with Sling-Sat (4S), which features

a chaser capable of using impulsive momentum exchanges from deorbiting debris, exploiting the fast

orbital velocities of debris to reduce the total ∆V required for the mission [32]. They show that this

consideration of orbital mechanics allows them to drive 73% of a certain debris removal sequence at no

cost, and present a GA-based methodology for solving their problem formulation.

3.2 Strategies for effective ADR

While the design of ADR mission planning algorithms is important, it is also necessary to understand

that effective ADR is more than application of combinatorial optimization techniques. Several studies

have been published on the topic of the evolution of the LEO environment, using simulations such as

NASA’s LEGEND model [33] and ESA’s MASTER model [34] to monitor the growth of the LEO debris

population.

Liou et al. use the LEGEND model to find that “the LEO environment can be stabilized in the next

200 years with an ADR removal rate of five objects per year” [4]. This metric has since been used as

a benchmark for subsequent studies on ADR mission planning [24, 35]. The study also introduces the

concept of a “selection criterion based on the mass and collision probability of each object”, emphasizing

the importance of prioritizing removal of debris that is more threatening to the LEO environment.

White and Lewis further investigate the optimal ADR removal rate with the DAMAGE and CAS-

CADE models, finding that the optimal ADR removal fluctuates due to both in-orbit debris fragmentation

and external factors such as further launches or uncertainties in future advancements in technology [36].

They model the change in size of the LEO population and present an adaptive strategy for ADR missions.

Rossi et al. further develop the selection criteria of debris to remove [37]. They present the Criticality

of Spacecraft Index (CSI), which considers the physical characteristics, orbit, and environment of the

object, and give a formula for the CSI in terms of these parameters.

4 Problem statement

The objectives and constraints on active debris removal will vary between missions, depending on the

specific requirements of the stakeholders implementing it. As such, there is no single problem statement

that can address the problem entirely, but an overall framework and set of techniques for ADR mission

planning can be developed. In particular, due to the nature of the space industry, most missions will

have various, potentially conflicting objectives, so we choose to formulate an MOP.

For the rest of this report, we assume that the goal of ADR mission planning is to find a solution

that optimizes the set of removed debris to maximize the impact of the mission, while simultaneously

optimizing the maneuver sequence to minimize the transfer cost, with mission duration being considered

as a constraint. This specific MOP has been previously investigated [30] and provides a realistic example

of conflicting objectives in ADR mission planning.

Consider a cluster of N P N debris numbered from 1, 2, . . . , N in sun-synchronous orbit (SSO). We

focus on SSO because of the high density of debris in the orbital region [3]. Each debris is assigned a

score, with si P R` used to denote the score of the ith debris, quantifying the threat level posed by the

debris remaining in orbit. This process is further explained in Section 5.4.

The task of the ADR mission planning algorithm is to produce a sequence of maneuvers between

a selected subset of the debris targeted for removal, maximizing the total score of the removed debris,
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while minimizing the orbital transfer cost along the trajectory, without exceeding the constraints of the

mission. The problem statement is formally specified in Section 4.4.

4.1 Orienteering Problem (OP)

The problem of ADR mission planning can be modeled with a variant of the Orienteering Problem

(OP) [38]. Inspired by the sport of orienteering, the OP involves a “player” that must traverse a course

with many checkpoints, each with a different score. The course is represented by a weighted complete

graph, with vertices representing checkpoints and edges representing paths between them, with edge

weights representing the distance or time required to travel between two checkpoints. The player must

finish the course within a certain time limit, making it impossible to visit all checkpoints, so they must

strategically select a subset of checkpoints and navigate between them to maximize their score. In the

context of ADR, the player is the chaser, and the checkpoints are the debris.

The OP is a combination of the Knapsack Problem (KP) [39], which corresponds to debris selection,

and the Traveling Salesman Problem (TSP) [9], which corresponds to trajectory optimization. As both

subproblems are NP-hard, the OP is therefore also regarded as an NP-hard problem. The OP has other

applications in problems such as the mobile crowdsourcing problem or the tourist trip design problem [40].

4.2 Discretized representation of time

As time is a continuous variable, the number of possible missions is infinite. While there are only a finite

number of possible subsets of debris to select, there are an infinite number of orbital transfer possibilities

as they can start and end at any time. While metaheuristic approaches such as GAs and PSO are able

to tackle continuous optimization problems, calculating the cost of orbital transfers is non-trivial, and

doing so within the mission planning algorithm would result in a performance bottleneck.

Hence, we use the strategy proposed by Zona et al. [22] to precompute all of the possible transfers

within the time frame of the mission before trajectory optimization, using a discrete representation of

time. Time is broken down into a set of Nt time epochs τ given by

τ “ tτ1, τ2, . . . , τnu (2)

τk “ k∆t (3)

∆t “
tmax

Nt
(4)

∆t represents the length of one time epoch, and tmax represents the maximum length of an ADR mission.

4.3 Selected orbital transfer strategy

We use the transfer strategy proposed by Cerf to perform orbital transfers between space debris [41],

exploiting the J2 perturbation [42] to correct the RAAN of the chaser Ωc during a drift orbit, represented

by d. The steps to perform such an orbital transfer are as follows:

1. Perform a Hohmann transfer from the orbit i to the drift orbit d

2. Wait in the drift orbit for the J2 perturbation to correct Ωc

3. Perform a Hohmann transfer from the drift orbit d to the orbit j

12
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Figure 6: The proposed orbital transfer strategy

Figure 6 depicts the three stages of the orbital transfer strategy. The cost to perform an orbital

transfer between the ith debris and jth debris, departing from i at time epoch τk and arriving at j at

epoch τk`m is referred to as ∆Vijkm, where 1 ď i, j ď N and τk, τk`m P τ and 1 ď m ď mmax, where

mmax limits the maximum length of the transfer.

To perform the transfer efficiently, it is necessary to find the optimal drift orbit with a semi-major

axis ad and inclination of id. This can be done through solving a nonlinear optimization problem with

the drift orbit parameters as the decision variables and the resulting ∆Vijkm as the cost function [21],

stated as

min
ad,id

∆Vijkmpad, idq (5)

such that

Ωcpτk`mq “ Ωjpτk`mq (6)

where

Ωcpτk`mq “ Ωcpτ0q ` 9Ωipτk ´ τ0q ` 9Ωdpτk`m ´ τkq (7)

Ωjpτk`mq “ Ωpτ0q ` 9Ωjpτk`m ´ τ0q (8)

and 9Ωh in rad s´1 for any h P ti, j, du is determined by Equation (49). ∆Vijkm can be represented as a

function of ad and id [43], given by

∆Vijkmpad, idq “ ∆VP1 ` ∆VA1 ` ∆VP2 ` ∆VA2 (9)

This function is a summation of four separate maneuvers, which represent the impulsive maneuvers

performed at the perigee P and apogee A of an orbit during two Hohmann transfers and are calculated
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with the law of cosines [43].

∆VP1 “

b

v2i ` v2P1 ´ 2vivP1 cosp∆iisiq (10)

∆VA1 “

b

v2d ` v2A1 ´ 2vdvA1 cosp∆iip1 ´ siqq (11)

∆VP2 “

b

v2j ` v2P2 ´ 2vjvP2 cosp∆ijsiq (12)

∆VA2 “

b

v2d ` v2A2 ´ 2vdvA2 cosp∆ijp1 ´ siqq (13)

where

vh “

c

GMC

ah
(14)

∆ii “ |ii ´ id| (15)

∆ij “ |ij ´ id| (16)

si “
1

∆ii
arctan

˜

sin∆ii
a

a3d{a3i ` cos∆ii

¸

(17)

sj “
1

∆ij
arctan

¨

˝

sin∆ij
b

a3d{a3j ` cos∆ij

˛

‚ (18)

Nonlinear programming (NLP) can be used to solve the optimization problem for each value of ∆Vijkm

prior to trajectory optimization, which can be stored in a tensor of shape N ˆ N ˆ Nt ˆ mmax.

4.4 Time-Dependent Orienteering Problem (TDOP)

Due to the orbital mechanics of space debris, the OP in its standard form cannot be applied directly to

solve the problem of ADR mission planning, as the transfer cost between debris is constantly changing.

Hence, the problem must be formulated with a time-dependent extension of the OP, known as the Time-

Dependent Orienteering Problem (TDOP) [38].

After the transfer cost ∆Vijkm has been precomputed for all possible orbital transfers during the

mission, the problem reduces to a pure TDOP. The algorithm must output a mission plan Mpd, tq,

composed of an ordered subset of n ď N debris d “ td1, d2, . . . , dnu to remove, at the corresponding

strictly increasing rendezvous times t “ tt1, t2, . . . tnu, where for each i, the di
th debris is removed at time

epoch ti. The mission imposes certain constraints on the algorithm, requiring that the debris removal

sequence be completed within a time limit tmax and that the total ∆V does not exceed ∆Vmax.

The problem can be classified as an NP-hard bi-objective constrained combinatorial optimization

problem, formally described by the equations

max
M

n
ÿ

i“1

sdi (19)

min
M

n´1
ÿ

i“1

∆V
didi`1

ti
∆t

ti`1´ti
∆t

(20)
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Equations (19) and (20) describe the two objectives of the optimization problem.

n´1
ÿ

i“1

∆V
didi`1

ti
∆t

ti`1´ti
∆t

ď ∆Vmax (21)

tn ď tmax (22)

Equations (21) and (22) represent the constraints of the optimization problem.

@1 ď i ď n : di P N`, 1 ď di ď N (23)

@1 ď i, j ď n, i ‰ j : di ‰ dj (24)

@1 ď i ď n : ti P τ (25)

@1 ď i ď n ´ 1 : ti ă ti`1 (26)

Equations (23) to (26) ensure that the solution M is well-formed. This formulation of the ADR mission

planning problem with the TDOP is based on that proposed by Federici et al. [21], extended to be an

MOP.

5 Approach

We propose a novel approach based on memetic algorithms (MAs) for solving the problem of ADR mission

planning. MAs refer to hybrid metaheuristic algorithms that combine a global search process with a local

search technique [44]. While the global search process can be any metaheuristic, research on MAs are

often focused on combining EAs with local search [45], and indeed MAs have been described within the

analogy of EAs, where the global search process is analogous to natural selection and the local search

process is analogous to individuals learning from experience over their lifetime [46].

5.1 Genetic algorithm

Our MA-based approach uses a multi-objective GA as its basis. We employ the Non-dominated Sorting

Genetic Algorithm II (NSGA-II) [31], an elitist multi-objective GA characterized for its computational

efficiency. We will first briefly introduce NSGA-II and justify why we use it, and then describe and justify

our choices of GA parameters and operators.

5.1.1 NSGA-II

NSGA-II is an improvement on the original NSGA multi-objective GA [31]. Instead of keeping one

population of size n, NSGA-II keeps two populations P and Q. On every iteration, both populations

are combined and sorted into k non-dominated fronts F0, F1, . . . , Fk´1. To perform the non-dominated

sorting process, the initially Pareto optimal or non-dominated solutions are assigned to F0, and then F0

is removed from consideration. The solutions that are now non-dominated when F0 is not considered are

added to F1 and the process repeats until no solutions remain unsorted.

Once non-dominated sorting is complete, each front is individually sorted by crowding distance, from

highest to lowest. Crowding distance is a metric that indicates the size of the generalized volume or

hypervolume in the objective space between a solution, the previous solution and the next solution when

sorted in terms of performance on one objective. The crowding distance for a front F on a M -objective
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MOP can be calculated with the equation [31]

cpFiq “

$

&

%

8 i P t0, |F | ´ 1u

řM
k“1

fkpFi`1q´fkpFi´1q

maxpF,fkq´minpF,fkq
otherwise

(27)

assuming that F has been sorted in terms of each objective before calculation. Since the goal of crowding

distance is to preserve solution diversity, the lowest and highest fitness solutions in terms of each objective

are assigned a crowding distance of 8 to ensure they are kept. NSGA-II then uses binary tournament

selection [47] to select the next generation, using typical crossover and mutation operators in other GAs.

NSGA-II is a popular multi-objective GA due to its efficiency, with a time complexity of OpMN2q [31],

where M is the number of objectives and N is the population size. We also favor it over other MOEAs

due to its flexibility in allowing us to easily implement the local search procedure to create a memetic

algorithm. Algorithms based on NSGA-II have demonstrated favorable results in solving the ADR mission

planning problem [30].

5.1.2 Genetic representation

Due to the combinatorial and time-dependent nature of the ADR mission planning problem, a hybrid

encoding is chosen. In our case, we need to represent a series of transfers of the form ∆Vijkm, which

encapsulates information of debris selection, order of removal and transfer selection.

Debris order o 3 8 4 2 5 1 7 6

Transfer duration m 1 1 2 1 3 5 4 H

Figure 7: Hybrid encoding with parallel chromosomes for order and time

We choose to represent the order of removal and transfer durations separately, with two parallel

permutation and value chromosomes [48] forming a hybrid encoding. Figure 7 shows an example solution,

where the oi represents the i
th piece of debris to remove and mi represents the transfer duration between

oi and oi`1. mn is H because there are no more transfers in the sequence. Once the solutions are found,

the encoding po,mq can easily be decoded back into a mission plan Mpd, tq.

One advantage of this encoding scheme is that debris selection and path optimization can be considered

separately from transfer durations. This is useful because in the beginning, solutions are spread out

uniformly and exploration is more important, making optimization of transfer time pointless, and when

the algorithm converges on a set of potential good solutions, exploitation is necessary to select the

best possible solution and transfer time becomes significant. Hence, detaching order from time allows

finer tuning of genetic operators for ideal exploration and exploitation. However, it must be noted that

consideration of time-dependence cannot be completely ignored at any point, as it would easily lead to

infeasible solutions to the TDOP.

Another choice that was made relevant to genetic representation was to use a fixed-length permutation

encoding for the removal order, which is used for problems such as the TSP but less for the OP and its

variants. The main motivation for this was to simplify the implementation and create flexibility in

designing the GA operators, especially since many researchers agree that the necessary number of debris

to remove per year is fixed [4]. However, future investigations could use a variable-length encoding,

especially as the local search process may be able to take advantage of it.
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5.1.3 Crossover

Also known as recombination, crossover is the process of combining two “parent” individuals to create

new “offspring” [49]. It should aim to retain the desirable genetic qualities of the parents for exploitation,

but often also creates opportunities for exploration. Various crossover operators have been proposed for

GAs, but for permutation-encoded combinatorial optimization problems, all valid solutions must obey

some invariants, such as never removing the same debris twice [50]. The two strategies often used to

resolve this are:

1. Using a regular crossover operator, and then disqualifying any invalid solutions

2. Using a regular crossover operator, and then performing a repair operation on the children to ensure

that they are valid

3. Using a specific crossover operator suitable for permutation encoding

We choose the last option, which could use operators such as Order Crossover (OX), Cycle Crossover

(CX) and Partially-Mapped Crossover (PMX) [49]. Note that as mentioned in the last section, our genetic

representation allows the use of different operators for debris order and transfer times.

For debris order, the PMX operator is selected as it produces offspring which satisfy the invariants of

the TDOP, and because it is a well-known, widely accepted operator for non-time-dependent combinato-

rial optimization problems like the TSP [50]. However, for transfer times, two-point crossover — a simple

crossover procedure which swaps a subsequence between chromosomes delimited at two randomly-chosen

points — is used as transfer duration uses value encoding. Figure 8 visualizes the PMX operator and

both crossover operators are described with pseudocode in Algorithm 2.

5.1.4 Mutation

The mutation operator is applied to a small subset of the population to retain genetic diversity and avoid

premature convergence. Several mutation operators were considered in preliminary experimentation,

including a “swap” operator and a “replace” operator. The algorithms are described in Algorithm 3.

In practice, the “replace” operator tended to perform better due to the size of the solution space.

Even with random initialization of the initial population, solutions tended to converge upon selecting

specific high-scoring debris and transfers with low ∆V , so mutations where new debris could be explored

increased diversity significantly.

5.1.5 Avoiding premature convergence

In preliminary experimentation, premature convergence proved to be a severe limiting factor for all GAs

when tasked with solving the ADR mission planning problem. To some degree, this is to be expected

as premature convergence has been shown to be a severe limiting factor of GAs [20], which is further

exacerbated by the uneven nature of the TDOP solution landscape.

As such, some measures to avoid premature convergence have been applied to all GAs, including

using random initialization to create the initial population, selection of mutation operators to increase

exploration, a large population size, all of which work in conjunction with each GA’s specific diversification

strategy, such as the use of crowding distance by NSGA-II [31].

However, precaution was also taken to avoid loss of exploitation abilities, as typical GAs use the

same parameters and operators across the entire process, even when exploitation is more favorable at the

end. Researchers have demonstrated that GAs could be modified to adapt their configuration during the

optimization process to produce a more favorable balance of exploitation and exploration [52], which is

a promising future research direction.
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Figure 8: Partially-Mapped Crossover (PMX) [51]

Algorithm 2 Crossover operators

procedure Two-Point-Crossover(p1, p2)
r1, r2 Ð Random-Integer(1, |x|), Random-Integer(1, |x|)
l, r Ð minpr1, r2q,maxpr1, r2q Ź Select two random indices
c1, c2 Ð p1, p2
c1rl : rs Ð p2rl : rs Ź Copy genes from p2 to c1 from l to r
c2rl : rs Ð p1rl : rs Ź Copy genes from p1 to c2 from l to r
return c1, c2

end procedure
procedure PMX(p1, p2)

c1, c2 Ð Two-Point-Crossover(p1, p2) Ź PMX starts by performing two-point crossover
m Ð mapping created from p1rl : rs and p2rl : rs

Legalize c1, c2 with m by mapping repeated genes into non-repeated genes from the other parent
return c1, c2

end procedure

Algorithm 3 Mutation operators

procedure Swap(x)
r1, r2 Ð Random-Integer(1, |x|), Random-Integer(1, |x|)
l, r Ð minpr1, r2q,maxpr1, r2q Ź Select two random indices
temp Ð xrls
xrls Ð xrrs

xrrs Ð temp
return x

end procedure
procedure Replace(x)

i Ð Random-Integer(1, |x|) Ź Select a random index
xris Ð Random-Integer(1, N) Ź Replace it with a random debris
return x

end procedure
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5.2 ADR Memetic Algorithm (ADR-MA)

We present a novel application of memetic algorithms to solving the problem of ADR mission planning,

which we refer to as ADR-MA (Active Debris Removal Memetic Algorithm). It combines NSGA-II with

a novel local search (LS) process capable of exploiting properties of the TDOP specific to ADR mission

planning, especially the large number of transfer possibilities between debris.

Memetic algorithms are known to perform particularly well on combinatorial optimization problems,

due to the rugged solution landscape and the more complicated permutation-based solution structure [53].

This quality also allows them to perform well on time-dependent problems like the TDOP, which feature

a difficult interplay between discrete and continuous optimization.

The procedure of ADR-MA is summarized in Algorithm 4, which is shown with a generic Local-

Search procedure. We discuss the specific details of LS in ADR-MA in Section 5.3, including our novel

LS algorithm which exploits the properties of the ADR problem to produce better results.

Algorithm 4 ADR-MA

P0 Ð Initialize(npop)

Q0 Ð Initialize(npop)

for t Ð 1 to ngen do

Rt Ð Pt Y Qt

for all x P Rt do

fx Ð Fitness(x)

end for

F Ð Nondominated-Sort(Rt) Ź Sort into non-dominated fronts

Pt`1 Ð H

i Ð 0

while |Pt`1| ă npop do

ci Ð Crowding-Distance(Fi) Ź Crowding distance is used to preserve genetic diversity

Sort-Descending(Fi, ci) Ź Keep individuals with higher crowding distance

Pt`1 Ð Pt`1 Y tFir0s, . . . , Firminpn ´ |Pt| ´ 1, |Fi|qsu Ź Keep individuals from better fronts

i Ð i ` 1

end while

Qt`1 Ð H

while |Qt`1| ă npop do

a, b Ð Binary-Tournament-Selection(Pt`1) Ź Selects two individuals from Pt`1

if Random-Probability() ď P pcrossoverq then

a, b Ð Crossover(a, b)

end if

if Random-Probability() ď P pmutationq then

a, b Ð Mutation(a), Mutation(b)

end if

a, b Ð Local-Search(a), Local-Search(b) Ź Perform LS to improve solutions

Qt`1 Ð Qt`1 Y ta, bu

end while

end for

Multiple ways have been proposed for combining EAs with LS techniques, including replacing the

mutation operator entirely with LS [53], performing LS on every individual on the population [19],

introducing a new parameter P plocal-searchq for the probability a solution will be improved [45, 44], and
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only selecting the best solutions in a population for improvement.

We choose to perform LS on every individual in the population. While we initially chose to define a

new parameter, it was found in preliminary experimentation that LS had a much larger role in preserving

solution diversity than we initially thought, so it was chosen to run on every individual. We also noticed

that the mutation operator alone could not create enough genetic diversity to avoid premature convergence

using EAs, so an elitist LS strategy would be likely be sub-optimal.

Since ADR-MA is based on NSGA-II, it has the same time complexity of OpMn2
popq, assuming the LS

process does not have a higher complexity class. As M “ 2 for our formulation of ADR mission planning,

the time complexity can be expressed as Op2n2
popq, which can then be reduced to Opn2

popq.

5.3 Local search techniques

Local search techniques are a widely researched topic in the field of metaheuristic optimization, with

prominent examples of generic LS techniques including random walks, hill climbing and local beam

search. Hill climbing is a greedy local search procedure that randomly modifies solutions and evaluates

them to see if the change is an improvement, keeping the best solution found [54].

However, the true strength in LS algorithms lies in the fact that compared to global search algorithms

like EAs, they can be adapted to be domain and problem-specific. For the TSP, several well-known LS

algorithms are widely used, such as k-opt, node insertion and edge insertion. To optimize a TSP tour, the

k-opt technique involves selecting a set of k edges to disconnect from the tour, enumerating all possible

permutations of those edges, and selecting the solution which produces the minimum travel cost [55].

While this is not computationally efficient enough to be viable for higher values of k, 2-opt and 3-opt are

popular LS algorithms for iteratively improving TSP solutions.

Algorithm 5 Local search techniques

procedure Hill-Climbing(x)

x˚ Ð x Ź Keep track of the best solution

for i Ð 1 to niter do Ź Run for niter iterations

x1 Ð Mutation(x˚) Ź Perform a mutation on x1

if x1 ą x˚ then

x˚ Ð x1 Ź Greedily keep the best solution found

end if

end for

return x˚

end procedure

procedure Two-Opt(x)

x˚ Ð x

for i Ð 1 to niter do

x1 Ð x˚

e1, e2 Ð randomly disconnect two edges from x1

Reconnect e1, e2 to x1 in the other possible order

if x1 ą x˚ then

x˚ Ð x1

end if

end for

return x˚

end procedure
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In the LS techniques shown in Algorithm 5, the criterion for keeping a solution is whether or not it

dominates the previous best solution, requiring it to be better in at least one objective and not worse in

the other. This avoids accepting solutions that may be better in one objective, but significantly worse

in another, leading to an overall decrease in quality; however, this does limit the exploration qualities of

LS.

Furthermore, a novel LS procedure for ADR-MA is presented, inspired by the concept proposed by

Verbeeck [56] for solving the TDOP efficiently with ant colony optimization (ACO). The algorithm is a

variant of hill climbing parameterized over an integer constant 1 ă k ă n´ 1. It begins by iterating over

all contiguous subsequences of both the order and time chromosome of length k, starting from cr1 : k`1s

and ending at crn´k´1 : n´1s for c P to,mu, and calculates the ratio of total score to total ∆V within

the subsequence. The subsequence with the lowest ratio of s : ∆V is removed.

Next, the algorithm selects all the debris that are not in the sequence and inserts them into the

optimal position in the sequence one-by-one in random order. This position is found by considering every

position the debris can be inserted into except for the first and last debris, and then finding the minimal

transfer cost for this position, finally choosing that with the best transfer cost. The pseudocode for the

full procedure is shown in Algorithm 6.

The entire LS procedure requires Opniter ¨ k ¨ n ¨ mmaxq calculations of ∆V , and since niter, n, m, and

k are constant parameters with reasonably low values in most situations, the performance cost of LS is

tolerable.

5.4 Simulation-based Debris Threat Index (SDTI)

We also present a novel methodology for estimating the risk proposed by space debris based on results

obtained from simulations with the cascade [57] library developed by the ESA Advanced Concepts Team.

Previous work in debris threat evaluation include indices based on the physical and orbital properties of

debris, such as the Criticality of Spacecraft Index (CSI) [37] and the Hazard Criticality Index (HCI) [30].

However, an approach based on LEO environment simulations has yet to be developed.

The motivation behind this methodological contribution is to increase the applicability of theoretical

approaches of solving the problem to ADR mission planning in practice, making the obtained results

more realistic. A key limiting factor in existing ADR research is the lack of technology to track and

provide accurate data on space debris [58], including necessary factors such as mass that are required for

calculation of indices like the CSI. Researchers have circumvented these limitations by using arbitrary

debris datasets [21, 22], such as GTOC 9 [59] which provide all the necessary data. However, in a

real-world mission, obtaining complete, accurate and updated data is not possible given current debris

tracking technology; hence our study demonstrates how simulations can be used to make up for this gap

in data.

5.4.1 Simulation

We demonstrate our methodology on a sample dataset of the Iridium 33 debris cluster [60]. The source

of the data and preprocessing techniques are discussed in more detail in Section 6.3. The dataset is used

in a cascade simulation that predicts collisions and conjunctions between debris, as well as orbital decay

of debris.

Definition 5 A collision is when two debris collide while in orbit around Earth.

Definition 6 A conjunction between two debris is when the shortest distance between them is below a

minimum threshold.
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Algorithm 6 Novel ADR-specific local search procedure

procedure ADR-Local-Search(o,m, niter, k)
o˚,m˚ Ð o,m
for i Ð 1 to niter do

worst-ratio Ð 8

worst-start Ð 1
for j Ð 1 to n ´ k do Ź Find the worst k-length subsequence

l, r Ð j, j ` k
s Ð

řr
i“l Score(oi)

∆V Ð
řr´1

i“l Delta-V(oi,oi`1,mi)
if s

∆V ă worst-ratio then Ź Compare subsequences by score-to-∆V ratio
worst-ratio Ð s

∆V
worst-start Ð j

end if
end for
l, r Ð worst-start,worst-start ` k
Delete(orl : rs)
Delete(mrl : rs)
o1,m1 Ð Insert-Debris(o,m, k)
if o1,m1 ą o˚,m˚ then

o˚,m˚ Ð o1,m1

end if
end for
return o˚,m˚

end procedure
procedure Insert-Debris(o,m, k) Ź Inserts k debris

Ω Ð tx : 1 ď x ď N, x R ou Ź Select all debris not in the sequence
Random-Shuffle(Ω)
for i Ð 1 to k do

best-ratio Ð 8

best-insert Ð 1
for j Ð 1 to n ´ 1 do

Consider inserting Ωi at oj

s Ð Score(Ωi)
∆V ˚ Ð min∆V to transfer from oj to oj`1

if s
∆V ˚ ą best-ratio then
best-ratio Ð s

∆V ˚

best-insert Ð j
end if

end for
Insert Ωi at obest-insert

Insert the corresponding transfer duration into m
end for
return o,m

end procedure
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The simulation is run over a time period of one year, simulating the entire LEO population. Data for

3 collisions and 2 decay events was obtained, however none involved the Iridium 33 cluster. A total of

1.05 ˆ 107 conjunction events with a distance of 0 ă d ď 5 km were recorded, of which 3.13 ˆ 105 events

involved the Iridium 33 debris.

5.4.2 Fragmentation damage estimation

Space debris that threatens to create a large amount of fragmentation should be prioritized for removal,

as mitigating the Kessler syndrome requires avoiding further fragmentation causing a cascading effect [2].

We decide to use the total momentum involved in a collision to estimate the potential damage it may

cause, as it considers both mass and velocity and the momentum of colliding debris will be transferred

into the LEO environment due to the law of conservation of momentum.

Using the formula for momentum p “ mv requires the mass and velocity of each object. Because

mass is not tracked in the Satellite Catalog (SATCAT), we use an approximation based on the radar

cross section (RCS) of debris objects. RCS is given as an area in m2, so it is first converted to a radius

in m:

r “

c

RCS

π
(28)

Some SATCAT objects do not have an exact RCS, but are instead categorized into “SMALL”, “MEDIUM”

and “LARGE”, which we assume to be r “ 0.15 m, r “ 0.55 m and r “ 2.00 m respectively, as rec-

ommended by cascade [57]. We then use two assumptions to relate the mass of a debris object to its

radius:

1. Debris objects are spherical in shape

2. The density of debris is constant

Neither assumption is valid in practice, but for the task of estimating debris threat level they can be used

for approximations. Under these assumptions, mass is directly proportional to the cube of the radius:

V “
4

3
πr3 (29)

ρ “
m

V
(30)

m “
4

3
πρr3 (31)

m9 r3 (32)

Again, this formula cannot give the mass of debris, but can be used to compare the mass of two debris

based on their radii through proportionality. The total momentum in a conjunction between a and b can

be calculated as:

ma “ r3a (33)

mb “ r3b (34)

px “ mavxpaq ` mbvxpbq (35)

py “ mavypaq ` mbvypbq (36)

pz “ mavzpaq ` mbvzpbq (37)

p “

b

p2x ` p2y ` p2z (38)
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5.4.3 Collision probability

Orbital debris simulations like cascade propagate the orbits of debris from a series of initial conditions

to create predictions about the future [57]. Any error in the initial conditions would grow in magnitude

as the orbits are propagated, so although the simulation may only predict a conjunction, it is possible

that a collision occurs instead. This happened to Iridium 33, which did not perform avoidance maneuvers

since the closest conjunction distance was predicted to be around 117 m [60].

The conjunction distance d between two debris affects the collision probability. We model the error

with a sphere of radius ϵ around each debris, and the probability of collision during a conjunction to be

proportional to the intersecting volumes V p2q of the error spheres [61]. More sophisticated models for

predicting collisions in orbit exist [62], but this model is used in this investigation as it simplifies the

threat index.

V p2q “
π

12d
pr1 ` r2 ´ dq

2
pd2 ` 2dpr1 ` r2q ´ 3pr1 ´ r2q

2
q, d ě r1 ` r2 (39)

r1 “ r2 “ ϵ (40)

V p2q “
π

12d
p2ϵ ´ dq

2
pd2 ` 4dϵq (41)

Verror “
4

3
πr3 (42)

P “

$

&

%

1 d “ 0

V p2q

Verror
otherwise

(43)

5.4.4 Time of conjunction

A simple exponential decay model is used to decrease the prioritization of conjunctions that occur further

into the future.

T “ Ae´λt (44)

where t is the time of conjunction after the start of simulation in years, and A and λ are parameters

which can be customized to suit the characteristics of individual missions where t, A, λ P R`. In our

investigation, we use the values A “ 2 and λ “ 1.

5.4.5 Threat level

Finally, the threat level or criticality of a conjunction is given by:

c “ p ˆ P ˆ T (45)

The total criticality of a piece of space debris is the sum of the values of c in which it is involved. After

calculation, score values are normalized within the range of 0–100 through min-max scaling. Figure 9

shows the distribution of debris scores after data processing.
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Figure 9: Score distribution for the Iridium 33 cluster

We name our debris threat evaluation methodology the Simulation-based Debris Threat Index (SDTI).

We believe that developing this model is a significant contribution and encourages future development

of reliable and practical simulation-based debris scoring; we expect improvements in debris tracking

technology to enable innovations in debris threat quantification in the future.

6 Experiment

6.1 Comparison

We compare our proposed memetic algorithm for ADR mission planning with several other state-of-the-

art approaches. As NSGA-II provides the framework that forms the basis of ADR-MA, it is naturally a

good baseline comparison.

Strength Pareto Evolutionary Algorithm 2 (SPEA2) [63] was proposed as an improvement to the

original SPEA MOEA, and is widely regarded as a benchmark for MOEA experiments. It employs an

“archive” accompanying the typical population, copying the Pareto set to the archive without duplication

on each iteration, and is known for its ability to maintain a well-distributed set of non-dominated solutions,

achieved through a unique fitness assignment scheme and its archive-based approach.

Furthermore, we also compare ADR-MA to multi-objective memetic algorithms (MOMAs) [53] based

on NSGA-II that use other local search techniques described earlier, namely hill climbing and 2-opt. Both

of these MOMA variants have been applied to the ADR mission planning problem in prior work [22, 64].

Table 1 summarizes the algorithms we compare in our experiment.
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Algorithm Description

ADR-MA Proposed algorithm for ADR mission planning.

NSGA-II MOEA known for speed and elitist selection process.

SPEA2 MOEA known for its fitness assignment scheme and archiving of Pareto

optimal solutions.

MOMA (Hill Climbing) MOMA based on NSGA-II combined with hill climbing local search.

MOMA (2-opt) MOMA based on NSGA-II combined with TSP 2-opt local search.

Table 1: Summary of algorithms compared in the experiment

All algorithms were implemented using the jMetalPy multi-objective metaheuristic optimization li-

brary [65]. Algorithms NSGA-II and SPEA2 were entirely implemented with jMetalPy components,

while MOMA and ADR-MA were implemented by extending the algorithms provided by the framework.

6.2 Experiment design

The independent variable of the experiment is the algorithm used to solve the ADR mission planning

problem. The algorithms in Table 1 will be compared. To minimize the effect of random error caused by

pseudorandomness inherently present in EAs, each algorithm will be run three times and the Pareto set

across all runs of each algorithm will be used for comparison.

The dependent variable of the experiment will be the quality of solutions produced by the algorithms,

measured by quantitative comparisons of the set of non-dominated solutions produced by each algorithm,

as well as qualitative observations on the populations generated by each algorithm at the final generation.

The results will be visualized on a Pareto front in a two-dimensional objective space, and performance

indicators for evaluation of MOP solutions will be used for quantitative comparisons.

Aside from changing the algorithm, other GA/EA parameters will be set as control variables and

kept constant across all comparisons where possible, as different algorithms inevitably require different

parameter configurations. These parameters are listed in Table 2.

While the GAs listed in this report are described with termination criteria based on a maximum

number of generations, it has been shown that this can easily lead to unfair comparisons, due to the fact

that some EAs may perform more evaluations than others even when the number of generations is the

same [66]. Hence, our parameters are defined in terms of maximum number of evaluations neval, which

occur when the EA computes the fitness of an individual using the objective function. jMetalPy has

built-in support for number of evaluations as a termination criterion [65].

Parameter Algorithm Description Value

neval All Number of evaluations 105

npop All Population size 1000

P pcrossoverq All Probability of crossover 0.8

P pmutationq All Probability of mutation 0.01

P plocal-searchq MOMA Probability of local search 0.05

niter MOMA, ADR-MA Number of local search iterations 50

k ADR-MA Length of the contiguous debris subse-

quence replaced during local search

2

Table 2: EA parameters
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A higher mutation rate of up to 10% was experimented with in an attempt to avoid premature

convergence, but it did not have any effect on the convergence rate of the algorithms, so the standard

recommended rate of 1% was used instead to avoid negatively affecting exploitation [20].

6.3 Dataset

In 2009, the operational Iridium 33 communications satellite accidentally collided with the defunct Cosmos

2251 communications satellite [60] — the first time two satellites have collided in orbit. The US Space

Surveillance Network (SSN) has cataloged and tracked 386 debris originating from Iridium 33 and 927

debris from Cosmos 2251, a fraction of which has since decayed, re-entered the atmosphere. Figure 10

depicts the collision and debris fields generated following the collision.

(a) Point of collision (b) Debris fields after 20 minutes (c) Debris fields after 50 minutes

Figure 10: The Iridium 33 and Cosmos 2251 collision [67]

In our experiment, we investigate the Iridium 33 debris field, a moderately-sized debris cluster. The

data is provided by CelesTrak1 and Space-Track2, most of which originates from the SSN. The data is

preprocessed by converting it from the SATCAT format into a format readable by the cascade simulator,

for running simulations to create the SDTI. After preprocessing, the dataset contains orbital elements,

debris characteristics and SDTI scores for 285 Iridium 33 debris. Table 3 describes the dataset and

parameters of the ADR problem.

Parameter Description Value

N Number of debris in cluster 285

n Target number of debris to collect 20

tmax Maximum length of mission (days) 300

Nt Number of time epochs 100

∆t Length of one time epoch (days) 3

mmax Maximum length of singular transfer (epochs) 5

∆Vmax Maximum ∆V (m s´1) 1.5 ˆ 105

Table 3: Dataset and ADR problem parameters

6.4 Performance indicators

We use several performance indicators developed for evaluation of solution quality for MOPs, as surveyed

in [68] and used in [53]. X Ă Ω is used to denote a set of feasible solutions.

1https://celestrak.org
2https://space-track.org
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Before evaluation with the following performance metrics, the objective values including total score

and total ∆V were normalized between 1.0 and 2.0 using min-max scaling. The directions of the objectives

were also removed, by making 1.0 indicate the best performance among all solutions and 2.0 the worst

performance, regardless of where the objective to be maximized (score) or minimized (∆V ).

6.4.1 Hypervolume indicator

The hypervolume indicator IH is a measure of the size of the hypervolume in the objective space dominated

by the set of solutions X, where hypervolume can be thought of as a generalization of volume to higher

dimensions. In our formulation, the MOP is bi-objective, so the hypervolume is also an area. Figure 11

visualizes the hypervolume of a Pareto front.

Figure 11: Hypervolume of a Pareto front

Since our solutions are normalized between 1.0 and 2.0, the reference or nadir point is at (2.0, 2.0).

Algorithm 7 shows how IH is calculated.
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Algorithm 7 Calculation of IH
Sort(X, f1)

hpXq Ð f1px1q ˆ f2px1q

for i Ð 2 to |X| do

hpXq Ð hpXq ` pf1pxiq ´ f1pxi´1qq ˆ f2pxiq

end for

IHpXq Ð 4.0 ´ hpxq

The area under the Pareto fronts is calculated, and is subtracted from the area to the reference point

2.0ˆ 2.0 “ 4.0. A larger value of IH indicates that X dominates a larger area in the objective space and

hence is a better solution set.

6.4.2 Unary epsilon indicator

The unary epsilon indicator Iϵ is a metric which uses the ϵ-dominance relation, an extension of the

dominance relation. It indicates how close a solution front is to the Pareto front.

Definition 7 A solution x˚ ϵ-dominates another solution x, i.e. x˚ ąϵ x if and only if @f P F :

ϵfpx˚q ď fpxq ^ Df P F : ϵfpx˚q ă fpxq where F is the set of objectives in a minimization MOP and

x, x˚ P Ω.

The value for Iϵ can then be calculated with the equation

IϵpX,Rq “ inf
ϵPR

t@x P R : Dx˚ P X,x˚ ąϵ xu (46)

A smaller value of Iϵ indicates that the solution set X is closer to a given reference Pareto front R and

hence is better. Since a reference front R is required for this indicator, a Pareto front approximation was

created including all non-dominated solutions found by all algorithms. Without the true Pareto front

available for comparison, this is the best approximation that we could use.

6.4.3 Spacing indicator

The spacing indicator IS describes the distribution of the solution set X in the objective space, given by

the calculation

ISpXq “

g

f

f

e

1

|X| ´ 1

|X|
ÿ

i“1

pDpxiq ´ D̄q (47)

where Dpxq is the Euclidean distance between x and its nearest neighbor in the objective space and it

is assumed that |X| ě 2. A smaller value of IS indicates a more uniformly distributed set and hence is

better.

6.4.4 Range cover indicator

The range cover indicator IR represents the spread of the set X in the objective space and is calculated

with the formula

IRpXq “
1

M

M
ÿ

i“1

ˆ

max
xPX

fipxq ´ min
xPX

fipxq

˙

(48)

for an MOP with M objectives. A higher value of IR implies a wider spread and is better.
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7 Results

7.1 Solution quality

Figure 12: Comparison of Pareto fronts between algorithms

Figure 12 shows the solutions produced by the algorithms in the form of Pareto fronts in an objective

space. The fronts are convex towards the bottom-right direction due to the direction of the objectives,

with score (x-axis) to be maximized and ∆V (y-axis) to be minimized. The lines drawn represent the

Pareto front and the population of individual solutions is plotted as a scatter plot on the objective space.

It is clear from the figure that ADR-MA exhibits superior performance on the task of ADR mission

planning when compared to the other algorithms, with its Pareto front positioned to the right of and

below most of the other fronts. This is likely attributed to the ability of the ADR-MA LS procedure to

properly perform exploration and exploitation, a weakness of the other EAs when solving this problem.

Figure 13 depicts the distribution of the final population of each algorithm over all three trials in

the experiment. Evidence of premature convergence is visible in all algorithms except ADR-MA, and

is speculated to be the primary reason why they perform worse. This is clearly visible in the popula-

tion distributions of the algorithms at the final generation, where all algorithms except ADR-MA have

converged on multiple local maxima in both score and ∆V due to selecting the same debris or orbital

transfers, indicative of a lack of exploration.

Apart from ADR-MA, all of the other EAs appear to perform similarly, with similar Pareto fronts

and the issue of premature convergence. The 2-opt MOMA variant appears to have benefited from the

LS process in terms of exploitation as it achieves marginally better solutions, but still faces the same

issue of lack of exploration.

7.2 Performance indicators

As described in Section 6.4, min-max scaling was used to normalized the objective values between 1.0

(best) and 2.0 (worst). Figure 14 depicts the normalized Pareto fronts used for calculation of the perfor-
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Figure 13: Comparison of final population distribution between algorithms

Figure 14: Comparison of normalized Pareto fronts
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mance indicators, which are convex towards the origin as both normalized objectives are to be minimized.

The reference point for the hypervolume indicator IH is marked on the objective space.

Algorithm Hypervolume (IH) Unary epsilon (Iϵ) Spacing (IS) Range cover (IR)

NSGA-II 2.242 0.463 0.109 16161.145

SPEA2 2.206 0.541 0.172 11363.503

MOMA (Hill Climbing) 2.199 0.545 0.067 13532.226

MOMA (2-opt) 2.219 0.558 0.017 8634.158

ADR-MA 3.088 0.000 0.162 40209.826

Table 4: Algorithm performance indicators

Table 4 contains the values of the four proposed performance indicators, with the best-performing

algorithm indicator value displayed in bold. ADR-MA is observed to have better values for the hyper-

volume indicator IH and significantly better values for the unary epsilon indicator Iϵ and range cover

indicator IR. Since ADR-MA makes up the entirety of the Pareto front approximation, its Iϵ values is

0. However, ADR-MA performs poorly on the spacing indicator IS , with NSGA-II and both MOMA

variants achieving better results. This is speculated to be because solutions are distributed such that

frequency is higher in the middle of the Pareto front; future work may improve the NSGA-II crowding

distance mechanism for retaining solution diversity.

7.3 Algorithm performance

Algorithm Execution time / s

NSGA-II 65.84

SPEA2 8617.24

MOMA (Hill Climbing) 80.10

MOMA (2-opt) 72.64

ADR-MA 759.40

Table 5: Execution duration by algorithm

Table 5 shows the execution duration in seconds for each algorithm in our experiment. NSGA-II is

observed to be fastest, while SPEA2 is the slowest; this result can be intuitively expected as NSGA-II

was designed with speed in mind and both MOMA variants and ADR-MA are based on it, each of them

adding some local search procedure that increases execution time. Clearly, performing local search incurs

a performance cost, but given the improvement in solutions it can be argued that the benefit outweighs

the cost. In the context of ADR mission planning, algorithmic complexity and runtime performance is

not a primary concern, as missions are often planned well in advance.

7.4 Discussion

The results and performance of ADR-MA were presented, showing the capability of ADR-MA to perform

well on the task of ADR mission planning and suggesting the overall suitability of MAs over traditional

EAs for solving combinatorial optimization problems.

It is evident that the largest limiting factor of an EA-based approach is the balance between exploration

and exploitation of the solution space, where insufficient exploration leads to premature convergence and
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insufficient exploitation leading to poor solution quality. Although it was shown that MAs based on

generic LS procedures such as hill climbing and 2-opt are able to marginally improve this balance, the

performance of ADR-MA clearly indicates the high potential of domain-specific LS algorithms designed

with the characteristics of the problem in mind.

8 Conclusion

8.1 Summary

In this report, the problem of ADR mission planning was discussed. Relevant background topics and

existing methodology for ADR mission planning was surveyed. A problem statement based on a multi-

objective variant of the Time-Dependent Orienteering Problem (TDOP), a discretized representation of

time and an impulsive transfer strategy between debris was presented.

Various approaches were proposed to solve the ADR mission planning problem, including multi-

objective evolutionary algorithms such as NSGA-II. A novel memetic algorithm, ADR-MA was presented

and compared against the state-of-the-art in MOEAs, TDOP solutions and ADR mission planning; it

was shown to consistently outperform accepted approaches when measured with multiple performance

indicators.

A novel methodology for quantification of the threat level posed by space debris with cascade simu-

lations of the LEO environment was developed and used in the ADR mission planning algorithms. The

method was shown to be viable in practice for analysis and mission planning for the Iridium 33 cluster

of debris, and the further research necessary to improve and refine the simulation-based methodology for

wider application to ADR mission planning has been discussed.

This investigation provides a comprehensive end-to-end framework for ADR mission planning, using

ADR-MA for mission plan optimization and the SDTI for debris threat quantification. We show that our

framework is scalable by evaluating it on a reasonably large dataset and ensure its flexibility by defining

parameters which may be customized by mission planners.

8.2 Potential impact

This study discusses a wide range of topics, including ADR, evolutionary computation and multi-objective

combinatorial optimization. The potential impact of this study on the field of space sustainability may

include an improvement on the state-of-the-art in ADRmission planning through memetic algorithms such

as ADR-MA, as well as the introduction and refinement of simulation-based techniques for prioritizing

debris to remove even in the absence of certain data on space debris.

This study highlights a significant limitation of evolutionary computation and EAs, which is the

challenge in finding a balance between exploration and exploitation suitable for the problem the EA is

used to solve. It also suggests that memetic algorithms are a more suitable metaheuristic for compli-

cated combinatorial optimization problems such as ADR mission planning and that MAs are an effective

methodology for combining the strengths of EAs with those of local search.

Furthermore, the MA-based methodology could be further developed to make impactful contributions

to the wider field of combinatorial optimization, particularly in problems where time-dependence is a

significant obstacle for application of typical combinatorial optimization algorithms, or when the solution

space features a combination of discrete and continuous structures. This could also take the form of more

problem-specific memetic algorithms and local search techniques for other Orienteering Problem or TDOP

variants. Given that time-dependence is often the case in real-world scenarios, further developments in

this field may also lead to practical benefit.
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8.3 Limitations and further investigation

One major limitation to this study is that its scope was constrained to EAs and EA-based approaches

such as MAs. While EAs have been shown to be suitable for combinatorial optimization [8], the trade-off

between exploration and exploitation becomes more difficult to achieve on more complex problems such

as the TDOP, which could be described as a weakness of EAs as a metaheuristic in general. Although

MAs have been shown to outperform other metaheuristics such as ACO and EAs on the TDOP [53],

comparison against a wider range of algorithms may benefit this study.

Furthermore, the comparison presented in our results are based on a specific debris dataset — the

Iridium 33 cluster. While it is a reasonably large dataset and demonstrates the scalability of our method-

ology to real-world scenarios, evaluation against more debris datasets may increase the reliability of the

results and ensure that properties specific to Iridium 33 do not affect the performance of ADR-MA or

the other EAs compared.

Another limitation of this report is the limited evaluation of the SDTI, which is naturally hard to

compare as, to the best of our knowledge, similar methodology has not yet been developed in other

research. Evaluating the SDTI on a simulation is susceptible to confirmation bias and limitations in

openly-available data prevent comparison with the CSI [37] and HCI [30]. However, we still believe that

the SDTI is a valuable methodological contribution and will encourage development of more simulation-

based LEO space debris threat estimation methods and potentially similar techniques in other related

fields.

Further investigations in this topic may consider alternative novel problem formulations for ADR

mission planning, such as that presented by Missel and Mortari [32], investigation of other heuristic

techniques for ADR mission planning such as ACO [56] or SA [25], a variable-length hybrid encoding,

methods to avoid premature convergence such as varying parameters over time to balance exploration

with exploitation [52], continued development of simulation-based methodology for evaluating the threat

level of space debris, the impact of rotational momentum in threat posed by debris [69], or investigation

of other local search techniques in memetic algorithms, like shortest-path algorithms such as Dijkstra’s

algorithm or the A* search algorithm [21].
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A Orbital mechanics

Orbital mechanics is the study of the motion of bodies in orbit under the influence of gravity, atmospheric

drag, and thrust forces [70]. It is an important consideration for ADR missions as the chaser must perform

orbital maneuvers to rendezvous with debris, and is necessary for accurate tracking of the location and

movement of space debris.

A.1 Orbital elements

Longitude of ascending node
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True anomaly

Inclination
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Figure 15: Orbital elements [71]

Any orbit can be fully specified with a set of parameters known as orbital elements [70]. Figure 15 depicts

how the elements specify the shape and position of the orbital plane relative to a reference plane and

reference direction, and specify the specific location of the orbiting body at any point in time. Table 6

describes the six classical orbital elements as originally described by Kepler.

Orbital element Symbol Unit Description

Eccentricity e Unitless Characterizes the shape of the conic section of the trajectory.

For circular orbits e “ 0 and for elliptical orbits 0 ă e ă 1.

Right ascension

of ascending

node (RAAN)

Ω ° The ascending node is defined as the intersection of the orbital

plane with the reference plane when the satellite is moving

from below the plane to above the plane. Ω shows the angle

measured eastwards from the vernal equinox.

Inclination i ° The inclination specifies the angle between the reference plane

and the orbital plane.

Semi-major

axis

a m Specifies the size of the conic section. For a circle a is the

radius and for an ellipse a is the longest radius.

Argument of

periapsis

ω ° The argument of periapsis is an angle measured on the orbital

plane from the reference plane at the ascending node to the

periapsis of the orbit — when the satellite is closest to the

central body.

True anomaly ν ° The true anomaly is the angle measured on the orbital plane

between the current position of the satellite and the periapsis

of the orbit.

Table 6: Orbital elements
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A.2 Hohmann transfers

The most efficient transfer between two non-intersecting orbits requires a minimum of two impulsive

maneuvers. Assuming that both orbits are circular, the Hohmann transfer [72] can be used, which

connects the opposite sides of the initial and target orbits with an ellipse, as shown in Figure 16.

1

23

O
R₁R₂

Δv₁

Δv₂

Figure 16: Hohmann transfer [73]

∆v1 can be calculated as the difference in orbital velocity between the initial orbit and the transfer

orbit, and ∆v2 as the difference in orbital velocity between the transfer orbit and target orbit.

A.3 J2 perturbation

The Earth is not a perfect sphere; it is oblate, bulging around the equator due to the centrifugal effect

caused by its rotation. The J2 zonal coefficient is the second term in the series expansion determining

the effect of oblateness on Earth orbits, and the magnitude of its effect is over a thousand times greater

than other zonal coefficients [42].

The J2 perturbation will affect the RAAN of an orbit at a constant rate, depending on the size, shape

and inclination of the orbit. The equation for J2 nodal precession [42] is given by

9Ω “ ´
3

2
J2

a

GMCR2
Ca´ 7

2 cos i (49)

where 9Ω is the rate of J2 nodal precession, G is the universal gravitational constant, MC is the mass of

the Earth, RC is the radius of the Earth and the value of the J2 constant is 1.08262668 ˆ 10´3. The J2

perturbation is used in Section 4.3 to correct the RAAN of the ADR chaser during a drift orbit.
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